首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50160篇
  免费   4410篇
  国内免费   4715篇
  2023年   604篇
  2022年   803篇
  2021年   2520篇
  2020年   1842篇
  2019年   2150篇
  2018年   1983篇
  2017年   1452篇
  2016年   2136篇
  2015年   3226篇
  2014年   3756篇
  2013年   3993篇
  2012年   4852篇
  2011年   4363篇
  2010年   2708篇
  2009年   2388篇
  2008年   2673篇
  2007年   2318篇
  2006年   2075篇
  2005年   1724篇
  2004年   1504篇
  2003年   1292篇
  2002年   1067篇
  2001年   887篇
  2000年   857篇
  1999年   820篇
  1998年   473篇
  1997年   394篇
  1996年   416篇
  1995年   401篇
  1994年   366篇
  1993年   242篇
  1992年   386篇
  1991年   303篇
  1990年   326篇
  1989年   274篇
  1988年   197篇
  1987年   182篇
  1986年   159篇
  1985年   144篇
  1984年   129篇
  1983年   104篇
  1982年   87篇
  1981年   61篇
  1980年   46篇
  1979年   75篇
  1978年   55篇
  1977年   53篇
  1975年   60篇
  1974年   48篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
31.
32.
Bone and tooth, fundamental parts of the craniofacial skeleton, are anatomically and developmentally interconnected structures. Notably, pathological processes in these tissues underwent together and progressed in multilevels. Extracellular vesicles (EVs) are cell-released small organelles and transfer proteins and genetic information into cells and tissues. Although EVs have been identified in bone and tooth, particularly EVs have been identified in the bone formation and resorption, the concrete roles of EVs in bone and tooth development and diseases remain elusive. As such, we review the recent progress of EVs in bone and tooth to highlight the novel findings of EVs in cellular communication, tissue homeostasis, and interventions. This will enhance our comprehension on the skeletal biology and shed new light on the modulation of skeletal disorders and the potential of genetic treatment.  相似文献   
33.
Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.  相似文献   
34.
Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.  相似文献   
35.
36.
Structural changes associated with corolla wilting may serve as a mechanism for effecting self-pollination. Low pollinator visitation, high seed production and a corolla that persists after anthesis indicates that Pedicularis dunniana is autogamous. Delayed autonomous self-pollination is facilitated by corolla wilting. Wilting of the upper lip (galea) brought the pollen laden anthers into contact with the stigma resulting in the deposition of self pollen on the stigma. The seed set of flowers either emasculated, or with restrained galeae thus preventing anthers brushing against the stigma, was significantly lower than that of open-pollinated flowers. This demonstrates that autogamy occurs in this species through corolla wilting. Germination experiments indicated that outcross seedlings were more vigorous than selfed seedlings as a result of inbreeding depression. It is likely that autogamy provides reproductive assurance for P. dunniana under conditions of pollinator scarcity.  相似文献   
37.
Voltage-gated Na+ channels (NaV channels) are specifically blocked by guanidinium toxins such as tetrodotoxin (TTX) and saxitoxin (STX) with nanomolar to micromolar affinity depending on key amino acid substitutions in the outer vestibule of the channel that vary with NaV gene isoforms. All NaV channels that have been studied exhibit a use-dependent enhancement of TTX/STX affinity when the channel is stimulated with brief repetitive voltage depolarizations from a hyperpolarized starting voltage. Two models have been proposed to explain the mechanism of TTX/STX use dependence: a conformational mechanism and a trapped ion mechanism. In this study, we used selectivity filter mutations (K1237R, K1237A, and K1237H) of the rat muscle NaV1.4 channel that are known to alter ionic selectivity and Ca2+ permeability to test the trapped ion mechanism, which attributes use-dependent enhancement of toxin affinity to electrostatic repulsion between the bound toxin and Ca2+ or Na+ ions trapped inside the channel vestibule in the closed state. Our results indicate that TTX/STX use dependence is not relieved by mutations that enhance Ca2+ permeability, suggesting that ion–toxin repulsion is not the primary factor that determines use dependence. Evidence now favors the idea that TTX/STX use dependence arises from conformational coupling of the voltage sensor domain or domains with residues in the toxin-binding site that are also involved in slow inactivation.  相似文献   
38.

Background

Eosinophilia plays the major role in the pathogenesis of asthma and correlates with the up‐regulation of eotaxin, which, together with interleukin (IL)‐5, is important for differentiation, chemo‐attraction, degranulation, and survival of eosinophils in local tissue. In a previous study, we found that administration of lentivirus‐delivered short hairpin RNA (shRNA) to suppress the expression of IL‐5 inhibited airway inflammation. The present study aimed to investigate the role of eotaxin shRNA and the synergistic effect of eotaxin and IL‐5 shRNAs on airway inflammation in an ovalbumin (OVA)‐induced murine model of asthma.

Methods

Lentivirus‐delivered shRNAs were used to suppress the expression of eotaxin and/or IL‐5 in local tissue in an OVA‐induced murine asthma model.

Results

Intra‐tracheal administration of lentivirus containing eotaxin shRNA expressing cassette (eoSEC3.3) efficiently moderated the characteristics of asthma, including airway hyper‐responsiveness, cellular infiltration of lung tissues, and eotaxin and IL‐5 levels in bronchio‐alveolar lavage fluid. Administration of lentiviruses expressing IL‐5 or eotaxin shRNAs (IL5SEC4 + eoSEC3.3) also moderated the symptoms of asthma in a mouse model.

Conclusions

Local delivery of lentiviruses expressing IL‐5 and eotaxin shRNAs provides a potential tool in moderating airway inflammation and also has the potential for developing clinical therapy based on the application of shRNAs of chemokines and cytokines involved in T helper 2 cell inflammation and eosinophilia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号